Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phase Separation Induced by Au Catalysts in Ternary InGaAs Nanowires

Identifieur interne : 000156 ( Chine/Analysis ); précédent : 000155; suivant : 000157

Phase Separation Induced by Au Catalysts in Ternary InGaAs Nanowires

Auteurs : RBID : Pascal:13-0158703

Descripteurs français

English descriptors

Abstract

We report a novel phase separation phenomenon observed in the growth of ternary InxGa1-xAs nanowires by metalorganic chemical vapor deposition. A spontaneous formation of core-shell nanowires is investigated by cross-sectional transmission electron microscopy, revealing the compositional complexity within the ternary nanowires. It has been found that for InxGa1-xAs nanowires high precursor flow rates generate ternary InxGa1-xAs cores with In-rich shells, while low precursor flow rates produce binary GaAs cores with ternary InxGa1-xAs shells. First-principle calculations combined with thermodynamic considerations suggest that this phenomenon is due to competitive alloying of different group-III elements with Au catalysts, and variations in elemental concentrations of group-III materials in the catalyst under different precursor flow rates. This study shows that precursor flow rates are critical factors for manipulating Au catalysts to produce nanowires of desired composition.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0158703

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Phase Separation Induced by Au Catalysts in Ternary InGaAs Nanowires</title>
<author>
<name sortKey="Guo, Ya Nan" uniqKey="Guo Y">Ya-Nan Guo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Engineering, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Brisbane, QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Hong Yi" uniqKey="Xu H">Hong-Yi Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Engineering, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Brisbane, QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Auchterlonie, Graeme J" uniqKey="Auchterlonie G">Graeme J. Auchterlonie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Microscopy and Microanalysis, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Brisbane, QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burgess, Tim" uniqKey="Burgess T">Tim Burgess</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Joyce, Hannah J" uniqKey="Joyce H">Hannah J. Joyce</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QIANG GAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HARK HOE TAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jagadish, Chennupati" uniqKey="Jagadish C">Chennupati Jagadish</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shu, Hai Bo" uniqKey="Shu H">Hai-Bo Shu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xiao Shuang" uniqKey="Chen X">Xiao-Shuang Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong" uniqKey="Kim Y">Yong Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Physics, Dong-A University, Hadan-2-dong</s1>
<s2>Sahagu, Busan 604-714</s2>
<s3>KOR</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Sahagu, Busan 604-714</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIN ZOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Engineering, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Brisbane, QLD 4072</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Microscopy and Microanalysis, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Brisbane, QLD 4072</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0158703</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0158703 INIST</idno>
<idno type="RBID">Pascal:13-0158703</idno>
<idno type="wicri:Area/Main/Corpus">000F35</idno>
<idno type="wicri:Area/Main/Repository">000747</idno>
<idno type="wicri:Area/Chine/Extraction">000156</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alloying</term>
<term>Catalysts</term>
<term>Core shell structure</term>
<term>Density functional method</term>
<term>Gallium arsenides</term>
<term>Gold</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>MOCVD</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Phase separation</term>
<term>Precursor</term>
<term>Transmission electron microscopy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Séparation phase</term>
<term>Catalyseur</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Mécanisme croissance</term>
<term>Méthode MOCVD</term>
<term>Structure coeur couche</term>
<term>Microscopie électronique transmission</term>
<term>Précurseur</term>
<term>Composé III-V</term>
<term>Semiconducteur III-V</term>
<term>Méthode fonctionnelle densité</term>
<term>Alliage(action)</term>
<term>Or</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>InGaAs</term>
<term>InxGa1-xAs</term>
<term>GaAs</term>
<term>8116H</term>
<term>8107V</term>
<term>8107B</term>
<term>7115M</term>
<term>Structure coeur coque</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Or</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report a novel phase separation phenomenon observed in the growth of ternary In
<sub>x</sub>
Ga
<sub>1-x</sub>
As nanowires by metalorganic chemical vapor deposition. A spontaneous formation of core-shell nanowires is investigated by cross-sectional transmission electron microscopy, revealing the compositional complexity within the ternary nanowires. It has been found that for In
<sub>x</sub>
Ga
<sub>1-x</sub>
As nanowires high precursor flow rates generate ternary In
<sub>x</sub>
Ga
<sub>1-x</sub>
As cores with In-rich shells, while low precursor flow rates produce binary GaAs cores with ternary In
<sub>x</sub>
Ga
<sub>1-x</sub>
As shells. First-principle calculations combined with thermodynamic considerations suggest that this phenomenon is due to competitive alloying of different group-III elements with Au catalysts, and variations in elemental concentrations of group-III materials in the catalyst under different precursor flow rates. This study shows that precursor flow rates are critical factors for manipulating Au catalysts to produce nanowires of desired composition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Phase Separation Induced by Au Catalysts in Ternary InGaAs Nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GUO (Ya-Nan)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XU (Hong-Yi)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>AUCHTERLONIE (Graeme J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BURGESS (Tim)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JOYCE (Hannah J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>QIANG GAO</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HARK HOE TAN</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>JAGADISH (Chennupati)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SHU (Hai-Bo)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>CHEN (Xiao-Shuang)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>WEI LU</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>KIM (Yong)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>JIN ZOU</s1>
</fA11>
<fA14 i1="01">
<s1>Materials Engineering, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for Microscopy and Microanalysis, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Physics, Dong-A University, Hadan-2-dong</s1>
<s2>Sahagu, Busan 604-714</s2>
<s3>KOR</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA20>
<s1>643-650</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000173267790530</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0158703</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report a novel phase separation phenomenon observed in the growth of ternary In
<sub>x</sub>
Ga
<sub>1-x</sub>
As nanowires by metalorganic chemical vapor deposition. A spontaneous formation of core-shell nanowires is investigated by cross-sectional transmission electron microscopy, revealing the compositional complexity within the ternary nanowires. It has been found that for In
<sub>x</sub>
Ga
<sub>1-x</sub>
As nanowires high precursor flow rates generate ternary In
<sub>x</sub>
Ga
<sub>1-x</sub>
As cores with In-rich shells, while low precursor flow rates produce binary GaAs cores with ternary In
<sub>x</sub>
Ga
<sub>1-x</sub>
As shells. First-principle calculations combined with thermodynamic considerations suggest that this phenomenon is due to competitive alloying of different group-III elements with Au catalysts, and variations in elemental concentrations of group-III materials in the catalyst under different precursor flow rates. This study shows that precursor flow rates are critical factors for manipulating Au catalysts to produce nanowires of desired composition.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Séparation phase</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Phase separation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Catalyseur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Catalysts</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Structure coeur couche</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Core shell structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Alliage(action)</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Alloying</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InxGa1-xAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8116H</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>7115M</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Structure coeur coque</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Core shell structure</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="3" l="SPA">
<s0>Estructura núcleo cascarón</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>140</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000156 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000156 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0158703
   |texte=   Phase Separation Induced by Au Catalysts in Ternary InGaAs Nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024